
 Measuring the Center of a Dataset 
 Averages measure the “center” of datasets, the properties that datasets, when graphed, have in 
 their middle portions. 

 Mean:  the “mathematical average.” 
 𝞵 = 𝛴(v  a  )/n 
 v  a  : val of datapoint  a 
 n : number of datapoints in set 

 or 
 𝞵 = 𝛴(v  a  x f  a  ) 
 v  a  : val of datapoint(s) of kind  a 
 f  a  : % datapoint(s) of kind  a  are of the entire set  of datapoints (as decimal) 

 Median:  middle datapoint/value (when odd), or the  value between the two middle 
 datapoints/values (when even number of datapoints). 

 ↳  When there are an even number of datapoints, there is no middle 
 datapoint/value. So, to find the median, take the mean of the middle two 
 values. 

 Mode:  most commonly occurring datapoint/value. 

 Measuring Spread of a Dataset 
 There is sometimes an equivocation on the term “spread.” Spread can simply be synonymous 
 with  range  (the highest and lowest values in a dataset),  or can mean  clustering  (how the 
 datapoints and their values are grouped together). 

 Range  = (highest datapoint of the set) - (lowest datapoint  of the set) 

 range  = v  n  - v  1 

 Interquartile Range (IQR)  = the range of the middle  50% of datapoints. 

 IQR  = (highest value of the inner 50% of datapoints)  - (lowest value of the inner 50% of datapoints) 
 i.e. 

 IQR  = 3rd Quartile - 1st Quartile = Q3- Q1 

 ↳  Quartiles:  Quartiles are the dividing lines between  evenly spaced, 25% intervals. 
 Each interval is divided at the median/midpoint. Q1 is the dividing line between 
 the lowest 25% of datapoints and the next 25%. Q3 is the dividing line between 
 the highest 25% of datapoints and the previous 25%. That is, Q1 is the dividing 
 line between the interval of the lowest 25% of datapoints and the middle 50%, 
 and Q3 is the dividing line between the interval of the highest 25% of datapoints 
 and the middle 50%. 



 ↳  Finding Quartiles:  Order data from least to greatest. Find the median 
 (midpoint)--this is your middle quartile (cutoff value) (Q2). Split the data 
 into two sets along the median. Find the median of each set--these 
 medians are the cutoffs of each quarter interval (Q1 and Q3). Remember 
 that the quartiles are the cutoff values/points,  not  the highest or lowest 
 members of each interval. 

 Outlier Rule for Quartiles: 
 Any points that are more than 1.5 × 
 IQR above Q3 or below Q1 are 
 considered outliers. 

 Five Number 
 Summary  : 
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 Q2 
 (Median) 
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 What Range and IQR can Show: 
 Range (highest-lowest) simply shows how far the spread of the data  can be  . That is, it shows 
 how far apart the highest and lowest extremes of the entire dataset are. It  cannot  indicate how 
 the datapoints cluster together. For two very different datasets--one with tight clusters and one 
 with loose clusters of data--can have the same IQR. 

 Since IQR is just the range of the middle 50% of a dataset, IQR is limited in the same way: it 
 shows how far apart the highest and lowest extremes  of the middle 50% of data  are. It shows 
 how far the spread of the middle 50% of data points  can be  . But, again, it cannot indicate how 
 the datapoints cluster together. For two very different datasets--one with tight clusters and one 
 with loose clusters of data--can have the same IQR. 

 Proof: These two datasets have the same IQR. Yet, they have very different clustering, 
 and therefore graphs. This proof will work both for range and IQR, since IQR is just a 
 kind of range. 

 D  1  = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20} 
 D  2  = {0,1,2,3,4,5,6,9,9,9,10,11,11,11,12,15,16,17,18,19,20} 

 Comparative Use 1:  If D1 has higher IQR than D2, then  the middle 50% of the data points  can 
 spread out a greater distance from the median of the dataset in D1 than in D2. (Again, keep in 



 mind that this does not show how the data clusters, only the limits of how it  can  cluster. It is a 
 very vague measure.) 

 Comparative Use 2:  When you know the range and IQR  of a dataset, you can estimate how 
 much the bottom and top 25% intervals spread apart from the middle 50%. The greater the 
 difference between range and IQR, the more the low and high 25% intervals can deviate from 
 the middle 50%. This also indicates (is an indirect measure of) how far the low and high 25% 
 intervals deviate from the median. (But, again, keep in mind that this cannot show you how the 
 data clusters--it can only show you the limits of how far the data can cluster.) 

 Principles of Use:  Thus, if D1 has a greater difference  between range and IQR than 
 D2, then the lows and highs of D1  can  spread out much  farther (proportionally, relative to 
 the median and middle 50% of each, not absolutely) than the lows and highs of D2. And, 
 if D1 and D2 have equal IQRs, then the absolute distance the lows and high 25% of 
 datapoints  can  spread will be greater for D1 than  D2. 

 Measuring Clustering 
 But, IQR did not do for us what we really wanted it to do--it is too limited of a measure. What we 
 want is a way of quantitatively measuring how the data  clusters  , not just the limits of where it 
 can cluster. That is, I want a quantity that reflects how the datapoints are spread out on 
 average, high tightly they cluster together, not just how far apart they  can  be spread out, or how 
 tightly or loosely they can cluster together. I want to be able to tell, at a glance, that D1 has 
 tighter clusters than D2. But range and IQR are incapable of showing this alone. This is why we 
 need to construct new measures. Ultimately, this will culminate in Standard Deviation. But, to 
 understand why we need Standard Deviation, here are attempts at providing a useful measure, 
 and why they fail where Standard Deviation succeeds. 

 Naive Average Spread:  The average (mean) of all the  distances of each datapoint from 
 the median/midpoint. 

 𝑛𝑎𝑖𝑣𝑒     𝑎𝑣𝑔 .     𝑠𝑝𝑟𝑒𝑎𝑑    =    
 𝑖 

 𝑛 

∑( 𝑥 
 𝑖 

−  𝑚𝑒𝑑𝑖𝑎𝑛 ) /  𝑛 

 Naive Average Deviation:  The average (mean) of all  the distances of each datapoint 
 from the mean. The output is a proportion of the spread of each datapoint to the sample 
 size. Thus, hypothetically, if we knew that two datasets had the same sample size (  n  ), 
 but one had higher naive avg dev than the other, then the datapoints of the first would be 
 less clustered together than the second. 
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 But this has almost no usefulness because of a trivial cancellation issue. You can’t 
 simply take the “naive” average deviation from the mean and expect it to be useful. For 
 no matter what the values of the dataset are, this function will always output 0. If we’re 
 trying to compare datasets with this mean, but every dataset scores the same value, 
 there would be nothing to differentiate, and therefore nothing to compare. 

 Average Mean Deviation:  We could then try to modify  the naive average deviation to 
 avoid the uselessness of all sets resulting in 0 by including absolute value in the 
 numerator. It would still reflect the proportion of spread to sample size, without having 
 the cancelation issue. So, it still would allow us to see that, if two datasets had the same 
 sample size (  n  ), but one had higher avg mean dev than  the other, then the datapoints of 
 the first would be less clustered together than the second. This is called the average 
 mean deviation: 
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 This function solves the problem of all the values of the dataset canceling out to 0. 
 However, it faces another, equally troubling issue. For infinitely many datasets, this 
 function will produce the same value, even if the datasets have  drastically  different 
 spreads and clustering. Try calculating the average mean deviation for the following two 
 datasets: 

 D  1  = {-4,-4,4,4} 
 D  2  = {-6,-2,1,7} 

 You will find that, despite their drastic differences, both datasets produce an average 
 mean deviation of 4. Comparing these datasets in terms of this value would not tell us 
 anything about the spread of their data points relative to each other. Their differences 
 would be apparent on a graph, but this value would not help us predict how their graphs 
 might compare. Variance attempts to overcome this. 

 Variance  : the average  of deviation  squared  from the  mean. Variance avoids the problem 
 of all outputs being 0 or being the same for very different datasets by squaring each 
 deviation. 
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 :  the value of starting datapoint  i  𝑥 
 𝑖 

 : the mean of the values of all data points in  the dataset µ
 : sample size (the number of data points in the  dataset)  𝑛 

 Consult our dataset used previously again: 



 D  1  = {-4,-4,4,4} 
 D  2  = {-6,-2,1,7} 

 With average mean deviation, the final resulting score of these two datasets were the 
 same, and so that value was useless for comparing these sorts of datasets. But with 
 variance, D  1  ends up with a score of 16, and D  2  with  a score of 22.5 (try it yourself). 
 These are more useful for comparisons. 

 Variance thus  indirectly  reflects the deviation of  each datapoint from the mean, 
 and thus the clustering of the datapoints around the mean (numerator). And it puts this in 
 proportion to the sample size. So, it still would allow us to see that, if two datasets had 
 the same sample size (  n  ), but one had higher variance  than the other, then the 
 datapoints of the first would be less clustered together than the second. 

 However, the variance outputs will be very cumbersome to work with--large, 
 complex numbers. This is why we take standard deviation--to reduce the cumbersome 
 quantity of the SD score. 

 Standard Deviation  (SD): SD attempts to overcome these  issues and leave us with a 
 useful measure of clustering and spread without being cumbersome by taking the 
 square root of the variance. SD is just variance squared. Squaring these variance values 
 preserves their proportionality while giving us smaller, easier numbers to work with. But, 
 it is still the fundamentally same measure as the variance: it is a function of the spread 
 (deviation) of each datapoint from the mean, and the sample size, and thus reflects both. 
 Here is the simplest version of the SD function: 
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 :  the value of starting datapoint  i  𝑥 
 𝑖 

 : the mean of the values of all data points in  the dataset µ
 : sample size (the number of data points in the  dataset)  𝑛 

 The result of our previous dataset: SD outputs D  1  =  4, D  2  = 4.74. From this, we can see 
 that D  2  has an 18.5% larger SD score than D  1  . Since  we know the both have the same 
 sample size, this enables us to infer that the clustering  around the mean  of D  2  is 18.5% 
 larger than that of D  1  . 

 SD allows us to have an indirect measure of the clustering of datapoints  around 
 the mean  by  indirectly  measuring the  average spread  (deviation) of the datapoints  from 
 the mean. 

 Using SD as an External, Comparative Measure: 
 ●  When  n  of each dataset is the same, the higher SD  has looser 

 clustering. 
 ●  The bigger sample size lowers the SD value or “score.” The 

 smaller sample size increases the SD value. But, since variance 



 and SD are a  proportion  of clustering to sample size, you do not 
 need to know sample size to use SD to compare datasets. The SD 
 value is an indirect measure of degree of clustering proportional to 
 the sample size. So even if the sample size differs, the output SD 
 value will still reflect the amount of clustering on a graph. On two 
 datasets with the same SD but very different sample sizes, the 
 scatterplot distribution of the graphs will looks very similar, if not 
 the same, but the graphs will just scale up or down. 

 Using SD as an Internal Measure 
 When we say “this datapoint is one standard deviation away,” what do we mean? We find the 
 SD of a dataset. That value is now a unit of measurement. If SD = 13, then +1 SD is (  mean  + 
 13); -1 SD = (  mean  - 13). Internally, the SD of a 
 dataset simply measures distance of some 
 datapoint from the mean--there is nothing more 
 significant to it than that. However, if we know 
 the shape of a graph (the “distribution”), 
 knowing how far some datapoint is away from 
 the mean may help us predict that datapoint’s 
 prevalence or probability using the  empirical 
 rule. 

 Empirical Rule  (68-95-99.7 rule)  :  In a  normal 
 or “gaussian” distribution  graph, that is, a 
 bell curve  , 34% of the data is one standard 
 deviation above the mean ( +1 SD), and  34% 
 of the data is one standard deviation below the mean ( −1SD). Therefore, according to the 
 Standard Deviation Rule,  68% of the data falls between one standard deviation from the mean. 
 This is merely a trivial result from the definition of normal distribution, and is not a prediction 
 about real world datasets. 

 Normal Distribution:  a dataset has a normal distribution  if its median is also its mean and 
 mode, and the data points fall symmetrically around either side of the mean. Normal 
 distributions can be flatter or sharper than the one 
 pictured above, what matters is the symmetrical 
 distribution around the mean. 

 Right-Skewed Distribution:  most of the datapoints  fall 
 to the right (are greater than) the median. A 
 Left-Skewed Distribution  would be the opposite: most 
 of the datapoints fall to the left (are less than) the 
 median. 


